大家好,今天小编关注到一个比较有意思的话题,就是关于硬件python 学习的问题,于是小编就整理了4个相关介绍硬件Python 机器学习的解答,让我们一起看看吧。
python做机器学习的话有哪些推荐的书跟课程?
机器学习:
1.理论研究和推导可以看周志华老师的《机器学习》,也称为西瓜书,里面讲了各种算法的推导,比如线性回归,k值最近邻,支撑向量机等可解释模型,缺少神经网络的具体讲解。(还有一点就是其中不涉及到代码)
2.被奉为神作的是一本名为《Hands-On Machine Learning with Scikit-Learn,Keras&TensorFlow》,这本书把机器学习的讲解和代码结合在一块,从线性回归到支撑向量机再到深度学习都有设计(但以机器学习为主)
3.《机器学习实战》,真本书是一本比较经典的书,书比较老了,但是讲的挺好,这本书主要偏重代码,没有涉及到深度学习
深度学习:
1.理论研究的话可以参考花书《深度学习》,这本书纯粹讲理论推导,不涉及代码,是一本比较经典的书
2.《TensorFlow深度学习》,这本书Github上有免费的电子版,把深度学习的TF2.0相结合,俗称龙书,应该是TF书里面比较好的了
3.《动手学深度学习》pytorch版,这本书是把深度学习和Pytorch相结合,是Pytorch里面比较好的书籍了
课程的话:入门机器学习可以看吴恩达的课,主要是我一般喜欢看书自己学[捂脸][捂脸][捂脸]
Python是学什么的?能做什么?
朋友们好,我是电子及工控技术,我来回答这个问题。Python与C语言一样,它是一种计算机语言。通过我对Python语言初步了解来看,它比C语言来说具有更简洁、易读性强、可扩展性好的优点。特别是近几年以来,Python的使用者的数量越来越多,一度占据计算机编程语言的第三位。
Python语言是一种面向对象的脚本语言,随着版本的不断更新和语言新功能的添加,Python语言越来越多被用于各个领域之中,下面我举几个例子来说明一下它能做些什么。
1、人工智能技术及机器学习
Python语言在人工智技术方面具有独特的作用,比如在机器学习方面、人工智能AI(Artificial Intelligence)人脸识别技术。比如现在很多小区只需要刷脸就可以开门了,不需要用钥匙。那么这套刷脸开门系统所用的软件编程语言就是用Python语言编写的。
Python语言可以用来采集和处理数据,从这里我们看出它在科学计算和数据统计等方面具有很大的优势,并且我们使用Python语言是一个开源的,可以在计算机上免费安装使用。Python语言也会用到文件管理、桌面及界面设计开发、网络通信等各方面。
Python几乎是近几年最火的一门计算机语言。借着机器学习,尤其是深度学习的兴起,Python的发展搭上了快车。
如今深度学习领域最常用的两大框架TensorFlow和PyTorch都是基于Python的,所以学会Python几乎是所有做相关研究的人必备的技术。
Python相对于其他的语言优势很多,但是我想说的是它的“胶水”特性。
我们都知道,每一种语言都有其特长,比如C语言的迅速,Java的“一处编译,多处运行”,R语言广泛的统计学的包和Julia的计算快速。但是同时每一门语言都为这个特长牺牲了其他的性能。
Python可以作为胶水让你使用各个语言的特长,我们能在Python中使用C、Java、R和Julia,并且现在都已经有成熟的包让我们方便地使用。这些都是Python大行其道的原因。
其实计算机语言中马太效应是很明显的,也就是强者越强,弱者越弱。
在前几年做深度学习研究的人还在用Matlab,是因为之前的很多模型都是用Matlab写的,并且Matlab可以很方便地做矩阵运算。
但是随着近几年Python的包越来越完善,加上Google和Facebook分别发力做出了两个框架,Matlab终于寿终正寝,不再是人们研究的第一选择。
其实Python在前几年一直顶着一个“慢”的名头,是因为它是个弱类型的语言,在运行的时候需要动态解释。
这就相当于在运行的时候需要做很多的判断,速度自然就慢下去了。也就是近几年通过很多的优化,并且Python社区的发展,人们才慢慢地能够忍受这种慢,前提还是很多底层代码是用C来写的。
中公优就业的Python培训的学习时间分成两个阶段,第一个阶段就是Python的基础知识学习,可以自己做一些小程序来玩一玩,第二个阶段主要是更深入的Python学习,可以通过这个技能来找到合适的工作。
初级Python掌握阶段学习时间:
如果大家是零基础选择自学的话,一般所学的内容如下,这个期间主要学习的内容是常量、变量的应用,运算符的了解和使用、流程控制的使用、函数的定义和使用,容器处理方法,字符串处理方法,日期时间处理方法等, 掌握Python编程语言基础内容、OOP基础知识,学习后应该能自己处理OOP问题。
根据个人的理解能力和时间安排,所需要的时间也是不同的一般都是5个月左右或者是更多。
如果是已经有其他程序语言的基础,那么所需要的时间也是会大大的减少的。
深入Python学习时间:
深入学习的时间一般都是更久了,所有的知识一般都是入门会简单一点儿,之后想要继续深入学习所消耗的时间和精力也是会增长的,例如接下来要学的爬虫技术、人工智能方向都是需要时间进行学习的,需要好好加油哦
python是近十年来火起来的编程语言之一,与C、C++、Java、Swift及Go一样都是目前比较流行的高级编程语言。所以和其他语言一样,其学习的内容包括两个层面,一是python语法知识,一是在各种不同领域上的应用。熟练掌握好一门语言的基础语法是学习这门语言的前提,python 相较于其他语言,入门还是相对较为容易的,可以参考如下的学习路径:python基础——python高级语法——web开发——爬虫开发——自动化运维——数据挖掘和分析——人工智能与深度学习等。
至于Python能做什么,实际上也就是python学习内容的的第二个层面——应用:1、Web开发 2、网络爬虫 3、游戏开发 4、自动化测试 5、大数据与人工智能等等。另外,在实际开发中需要使用不同的框架来实现,比如web开发框架的Flask、Django,网络爬虫的框架的scrapy ,分布式计算框架Dpark,深度学习框架PyTorch。
python是一个解释性语言同时也是一种胶水语言,可以说具有瑞士军刀的特点,学好这门语言可以有效提高你的工作效率,处理一些比较棘手的问题,同时因为其简洁易懂的语法使其成为入门编程的最优选择。
一个非常好的问题。Python是一种跨平台的解释性脚本语言,随着版本迭代和功能扩展,由最初用于编写自动化脚本,到现在越来越多被用于大型的项目开发。
Python在AI算法领域是主流开发语言,尤其是随着近几年人工智能深度学习快速发展,学习使用Python编程的程序员越来越多。
将Python学习过程分为3个阶段分别解释一下。
1,首先要学习Python语言基础,数据类型、基本语法、常用数据结构、常用类,等等,网上资源很多。
2,结合工作内容或者兴趣方向,学习常用框架,比如Django是应用广泛的开源框架,注意学习时要挑选常用的Top3,不仅学习资料多,还有同事朋友交流分享。
3,随着学习进阶,逐步在工作中积累项目经验、提高技术水平,持续学习。
Python语法灵活、功能强大、使用方便,在应用于人工智能算法开发时,数据可视化功能非常受到欢迎。更多应用场景:
用python做机器学习有哪些资料推荐?
如今确实挺多诸如数据分析、机器学习的岗位选择使用python做开发的多,那么,如果是想从事机器学习开发的话,该如何起步呢?
要想把机器学习用起来,就得先掌握python的基础,诸如import、对象等的一些概念和使用要了然于心,否则基础不扎实的话,就会面临很多琐碎的问题。对于python基础的掌握,推荐慕课网教程,个人听过感觉还不错。 当然,书籍方法的话推荐《Python编程 从入门到实践》,此书可以充当字典,遇到不会的可以多翻翻。
python提供了很多可以很好支出程序进行矩阵、线性和统计等的数学运算,像大部分机器学习的开发者都熟悉的Scikit Learn包一样,里面封装了很多算法,可以让我们事半功倍。但也相应的需要我们花时间去了解里面包的使用,在这里推荐去官网看(https://scikit-learn.org/stable),里面也提供了很多例子供我们参考和研习。当然,也可以购买相应的书籍,这里推荐《机器学习实战:基于Scikit-Learn和TensorFlow》。此书涵盖机器学习的基础理论知识和基本算法——从线性回归到随机森林等,帮助读者掌握Scikit-Learn的常用方法;探讨深度学习和常用框架TensorFlow,一步一个脚印地带领读者使用TensorFlow搭建和训练深度神经网络,以及卷积神经网络。
机器学习需要使用的算法是很多的,虽然前辈们已经为我们留下了各种包方便我们使用,但真正解决机器学习开发者级别的,还在于内功的深厚,也就是算法。 只有真正的弄懂了算法,在开发的过程中才能真正的知其然而又知其所以然。 懂得了算法,你才能知道为什么需要这样做,为什么那样做会产生那样的结果,如何更好的调参等。 如果没有算法做铺垫,很快就会迷失在调包的迷雾中,很难更近一步的往上。 在这里,推荐你去看吴恩达机器学习课程,这门课程在网易公开课上也有。 同时,也建议你去看机器学习的入门教材,也就是周志华出的《机器学习》,此书对于新手来说也算是一件宝物。在内容上尽可能涵盖机器学习基础知识的各方面. 全书共16 章,大致分为3 个部分:此书介绍机器学习的基础知识;讨论了—些经典而常用的机器学习方法(决策树、神经网络、支持向量机、贝叶斯分类器、集成学习、聚类、降维与度量学习)后期还涉及特征选择与稀疏学习、计算学习理论、半监督学习、概率图模型、规则学习以及强化学习等。
sklearn, 去官网下载,里面讲解非常详细,同时还要学习一个pandas,numpy,matplotlib。视频的话直接在爱奇里搜机器学习,有一个免费的系列视频,希望能帮助到你。记住,是免费的。
spark机器学习和python机器学习的区别是什么?
spark是一个框架,python是一种语言,spark可以由python编写,python可以在spark下运行。原理上都是一样的,机器学习的原理都是数学上的东西。两者的区别只是语法上的不同,spark比较适合处理海量数据,但是不代表python不可以,而且python引入spark架构,既可以充分利用spark的分布式优势,也可以利用python灵活方便的优势。用的话选一个用就好了,没有一定的谁好谁坏。
到此,以上就是小编对于硬件python 机器学习的问题就介绍到这了,希望介绍关于硬件python 机器学习的4点解答对大家有用。