大家好,今天小编关注到一个比较有意思的话题,就是关于深度学习python路线的问题,于是小编就整理了2个相关介绍深度学习Python路线的解答,让我们一起看看吧。
深度学习的和Python有什么关联吗?
深度学习是一类模式分析的统称,就具体研究内容而言,主要涉及三类方法:基于卷积运算的神经网络系统,即卷积神经网络(CNN);基于多层神经元的自编码神经网络,包括自编码( Auto encoder)以及近年来受到广泛关注的稀疏编码两类( Sparse Coding);以多层自编码神经网络的方式进行预训练,进而结合鉴别信息进一步优化神经网络权值的深度置信网络(DBN)。
而Python是一种跨平台的计算机程序设计语言。 是一个高层次的结合了解释性、编译性、互动性和面向对象的脚本语言。最初被设计用于编写自动化脚本(shell)。正因为python语法简单,非计算机专业的人员也能很快的上手掌握,并且生态环境良好,包管理成熟,能够让你把主要的精力投入到深度学习的算法分析设计上,所以目前大部分研究人员都在使python。假如未来出现更适合人工智能开发的程序语言,大家也会去学习。
关于这个问题,可以这样回答,深度学习是一种内容,而Python是它的其中一种实现方式。
深度学习是机器学习的一个分支,主要是脱胎于当初的神经网络算法,通过多个隐藏层的处理,达到我们所需要的任务的训练,得到一个有效的模型。深度学习因为他的有效性,现在被广泛应用在,CV、NLP、语音识别等方面。
而Python因为他语言的简洁性和易扩展性,被广泛使用。Python拥有很多科学计算库,比如numpy,pandas,scipy。可视化库matplotlib,Scikit—learn等,可以方便调用。也有很多现成的人工智能开发框架可以直接使用,比如现在比较常用的PyTorch和TensorFlow,Keras,Spark等。
打个比方,用了Python就是不用重复造轮子,如我梯度下降算法,我可以直接使用现成的自动梯度下降函数,而不用自己重新写函数。
总结一句,现在的深度学习的实现形式通常是Python,就是用Python代码编写实现我们的深度学习算法。
深度学习和Python的关系大吗?
有一定关系,但没有必然的联系。深度学习是一种算法,大家对他的研究一般都是通过某个深度学习框架进行,很少从头去写代码的。比较出名的框架有caffe,torch,tensorflow,pytorch。
比如说最初很有名的一个深度学习框架caffe,是用C++实现的,他的作者是一个中国人,贾扬清。贾大牛本科毕业于清华大学,这个框架是他在加州理工伯克利分校读博时候的作品,后来这个框架由这个学校团队在维护。它主要应用在卷积神经网络上面。caffe有python接口,就是说可以用python程序来控制caffe的运行。
Torch是另外一个比较流行的深度学习框架,这个深度学习框架是用Lua语言写的。Lua语言相对比较小众,很多人用它来写游戏脚本。Torch最初的支持者是Facebook。它相对于caffe来说更擅长在RNN方面的计算。
后来谷歌开发了tensorflow,采用的语言就是python,由于谷歌的大力支持,用tensorflow的人越来越多,再加上python本身有相当多数据处理方面的包。采用python进行深度学习的研究越来越主流。
于是,Facebook也把torch改进了一下,把它跟python结合了一下,搞了个pytorch。pytorch使用上比tensorflow要简单的多,再加上背后有Facebook的支持,很快与tensorflow有分庭抗礼之势。
总结一下,本来深度学习跟python没什么必然联系,一个是算法,一个是编程语言。但是研究深度学习大家一般都采用深度学习框架,而主流的深度学习框架tensorflow,pytorch都是用python写的,caffe也可以用python控制,两者因此也就有了联系。
这就给了很多奸商空子,打着深度学习的招牌教python,实际上教的东西跟深度学习半毛钱关系钱都没有。在此严重鄙视。
到此,以上就是小编对于深度学习python路线的问题就介绍到这了,希望介绍关于深度学习python路线的2点解答对大家有用。