大家好,今天小编关注到一个比较有意思的话题,就是关于python深度学习参数的问题,于是小编就整理了2个相关介绍Python深度学习参数的解答,让我们一起看看吧。
Python得达到什么程度,才能学好深度学习?
我是一名人工智能领域的研究生,让我来回答再合适不过了。其实Python只是我们实现算法,完成相关任务的一个工具,其他编程语言也是如此。Python在人工智能这方面的优势主要在于当前很多机器学习算法、深度学习算法被实现以及集成到一些包中,如:scikit-learn,keras,tensorflow,pytorch等。
对于深度学习这个领域我还是建议有一定的数学基础,如果没有的话,只能记住一些参数是怎么用的,然后慢慢领悟相关算法,如果太纠结于数学容易陷进数学理论中。毕竟数学是对现实问题的一种描述,需要有严谨的推导,而一些算法其实并不难,有了一定数学基础更容易理解算法。
在入门人工智能领域时,需要熟悉如:Numpy,Pandas,Matplotlib,Scipy等包,这些都是很多机器学习,深度学习框架,程序包经常使用的。对于Python的熟练程度,入门之后我还建议在学习机器学习算法的同时再看看一些Python进阶书籍,深刻了解Python运行的一些机理,这样也便于理解一些Python代码的书写。当然面向问题学习,进步是非常大的,当看一些机器学习代码,看不懂时可以百度,看看Python进阶的内容,然后再回过头来看代码,你会有新的感悟。
对于Python进阶内容,可以参考下面的内容
有了Python基础,下一步该怎么学习? https://www.toutiao.com/a1669912496550915
(图片来源网络,侵删)
深度学习框架都有哪些?
国际上广泛使用的开源框架包括谷歌的 TensorFlow、脸书的 Torchnet 和微软的 DMTK等, 美国仍是该领域发展水平最高的国家。我国基础理论体系尚不成熟,百度的 PaddlePaddle、 腾讯的 Angle 等国内企业的算法框架尚无法与国际主流产品竞争。
深度学习(Deep Learning)是机器学习中一种基于对数据进行表征学习的方法,深度学习的好处是用非监督式或半监督式的特征学习、分层特征提取高效算法来替代手工获取特征(feature)。目前研究人员正在使用的深度学习框架不尽相同,有 TensorFlow、Torch 、Caffe、Theano、Deeplearning4j等,这些深度学习框架被应用于计算机视觉、语音识别、自然语言处理与生物信息学等领域,并获取了极好的效果。
TensorFlow无疑是当前人气最高的明星产品:
TensorFlow是一款开源的数学计算软件,使用数据流图(Data Flow Graph)的形式进行计算。图中的节点代表数学运算,而图中的线条表示多维数据数组(tensor)之间的交互。TensorFlow灵活的架构可以部署在一个或多个CPU、GPU的台式以及服务器中,或者使用单一的API应用在移动设备中。TensorFlow最初是由研究人员和Google Brain团队针对机器学习和深度神经网络进行研究所开发的,目前开源之后可以在几乎各种领域适用。
Data Flow Graph: 使用有向图的节点和边共同描述数学计算。graph中的nodes代表数学操作,也可以表示数据输入输出的端点。边表示节点之间的关系,传递操作之间互相使用的多位数组(tensors),tensor在graph中流动——这也就是TensorFlow名字的由来。一旦节点相连的边传来了数据流,节点就被分配到计算设备上异步的(节点间)、并行的(节点内)执行。
TensorFlow的特点:
机动性: TensorFlow并不只是一个规则的neural network库,事实上如果你可以将你的计算表示成data flow graph的形式,就可以使用TensorFlow。用户构建graph,写内层循环代码驱动计算,TensorFlow可以帮助装配子图。定义新的操作只需要写一个Python函数,如果缺少底层的数据操作,需要写一些C++代码定义操作。
可适性强: 可以应用在不同设备上,cpus,gpu,移动设备,云平台等
自动差分: TensorFlow的自动差分能力对很多基于Graph的机器学习算法有益
多种编程语言可选: TensorFlow很容易使用,有python接口和C++接口。其他语言可以使用SWIG工具使用接口。(SWIG—Simplified Wrapper and Interface Generator, 是一个非常优秀的开源工具,支持将 C/C++ 代码与任何主流脚本语言相集成。)
到此,以上就是小编对于python深度学习参数的问题就介绍到这了,希望介绍关于python深度学习参数的2点解答对大家有用。