大家好,今天小编关注到一个比较有意思的话题,就是关于目前python 机器学习的问题,于是小编就整理了3个相关介绍目前python 机器学习的解答,让我们一起看看吧。
机器学习需要掌握网络爬虫吗?为什么?
不需要的。虽然说网络爬虫确实是数据采集的利器,但是机器学习更重要的是算法什么的,机器学习的数据来源有很多,不只是限于网络爬虫。其实网络爬虫和机器学习完全可以说是两个方向。不过如果两者都会的话,对你是百利而无一害的,技多不压身
因为数据是人工智能的基础,而爬虫是获取数据的方法之一,数据分析是为人工智能准备数据的前提。如果人工智能是匹千里马,那么爬虫就是出去割草的小牧童,而数据分析就是整理牧草晒干草的过程。当然,在条件具备的情况下,可能数据来源会有很多,但爬虫至少是一个可靠的途径。如果没有这两个过程,很可能人工智能这匹骏马会饿死。
虽说机器学习不要求掌握网络爬虫,但是,机器学习总要有样本,这个样本可是不容易搞,当然有一些现成的样本库,学习可以,应用还是要落地,所以我觉得网络爬虫对于搞机器学习还是必要的。
python做机器学习的话有哪些推荐的书跟课程?
机器学习:
1.理论研究和推导可以看周志华老师的《机器学习》,也称为西瓜书,里面讲了各种算法的推导,比如线性回归,k值最近邻,支撑向量机等可解释模型,缺少神经网络的具体讲解。(还有一点就是其中不涉及到代码)
2.被奉为神作的是一本名为《Hands-On Machine Learning with Scikit-Learn,Keras&TensorFlow》,这本书把机器学习的讲解和代码结合在一块,从线性回归到支撑向量机再到深度学习都有设计(但以机器学习为主)
3.《机器学习实战》,真本书是一本比较经典的书,书比较老了,但是讲的挺好,这本书主要偏重代码,没有涉及到深度学习
深度学习:
1.理论研究的话可以参考花书《深度学习》,这本书纯粹讲理论推导,不涉及代码,是一本比较经典的书
2.《TensorFlow深度学习》,这本书Github上有免费的电子版,把深度学习的TF2.0相结合,俗称龙书,应该是TF书里面比较好的了
3.《动手学深度学习》pytorch版,这本书是把深度学习和Pytorch相结合,是Pytorch里面比较好的书籍了
课程的话:入门机器学习可以看吴恩达的课,主要是我一般喜欢看书自己学[捂脸][捂脸][捂脸]
spark机器学习和python机器学习的区别是什么?
spark是一个框架,python是一种语言,spark可以由python编写,python可以在spark下运行。原理上都是一样的,机器学习的原理都是数学上的东西。两者的区别只是语法上的不同,spark比较适合处理海量数据,但是不代表python不可以,而且python引入spark架构,既可以充分利用spark的分布式优势,也可以利用python灵活方便的优势。用的话选一个用就好了,没有一定的谁好谁坏。
到此,以上就是小编对于目前python 机器学习的问题就介绍到这了,希望介绍关于目前python 机器学习的3点解答对大家有用。