大家好,今天小编关注到一个比较有意思的话题,就是关于深度学习python图像的问题,于是小编就整理了2个相关介绍深度学习Python图像的解答,让我们一起看看吧。
深度学习的和Python有什么关联吗?
关于这个问题,可以这样回答,深度学习是一种内容,而Python是它的其中一种实现方式。
深度学习是机器学习的一个分支,主要是脱胎于当初的神经网络算法,通过多个隐藏层的处理,达到我们所需要的任务的训练,得到一个有效的模型。深度学习因为他的有效性,现在被广泛应用在,CV、NLP、语音识别等方面。
而Python因为他语言的简洁性和易扩展性,被广泛使用。Python拥有很多科学库,比如numpy,pandas,scipy。可视化库matplotlib,Scikit—learn等,可以方便调用。也有很多现成的人工智能开发框架可以直接使用,比如现在比较常用的PyTorch和TensorFlow,Keras,Spark等。
打个比方,用了Python就是不用重复造轮子,如我梯度下降算法,我可以直接使用现成的自动梯度下降函数,而不用自己重新写函数。
总结一句,现在的深度学习的实现形式通常是Python,就是用Python代码编写实现我们的深度学习算法。
深度学习是一类模式分析方法的统称,就具体研究内容而言,主要涉及三类方法:基于卷积运算的神经网络系统,即卷积神经网络(CNN);基于多层神经元的自编码神经网络,包括自编码( Auto encoder)以及近年来受到广泛关注的稀疏编码两类( Sparse Coding);以多层自编码神经网络的方式进行预训练,进而结合鉴别信息进一步优化神经网络权值的深度置信网络(DBN)。
而Python是一种跨平台的计算机程序设计语言。 是一个高层次的结合了解释性、编译性、互动性和面向对象的脚本语言。最初被设计用于编写自动化脚本(shell)。正因为python语法简单,非计算机专业的人员也能很快的上手掌握,并且生态环境良好,包管理成熟,能够让你把主要的精力投入到深度学习的算法分析设计上,所以目前大部分研究人员都在使python。假如未来出现更适合人工智能开发的程序语言,大家也会去学习。
如何从采集开始构建深度学习的图像数据库?
我们可以利用微软的Bing图像搜索API来构建我们的深度学习图像数据集,微软的Bing图像搜索API是微软认知服务的一部分,用于将AI应用在视觉,语音,文本等的软件。下面我们将从零开始构建一个人脸识别数据集.
1、创建您的Cognitive Services帐户
点击下面的网页进入: https://azure.microsoft.com/en-us/try/cognitive-services/?api=bing-image-search-api 如截图中,要注册Bing图像搜索API,请单击“获取API密钥”按钮。 从那里您可以通过登录您的Microsoft,Facebook,LinkedIn或GitHub帐户进行注册(为了简单起见,我使用GitHub)。 完成注册过程后,您将在您的API页面看到类似于我的浏览器的页面:
2、使用Python构建深度学习数据集
2.1 阅读文档
如果您对 API如何工作或我们在发出搜索请求后如何使用API 有任何疑问,您应该参考这两个页面。
- Bing图像搜索API - Python QuickStart(https://docs.microsoft.com/en-us/azure/cognitive-services/bing-image-search/quickstarts/python)
- Bing图像搜索API - API Feedback(https://docs.microsoft.com/en-us/azure/cognitive-services/bing-web-search/paging-webpages)
2.2 安装requests包
$ workon your_env_name
$ pip install requests
2.3 创建脚本文件SearchBingAPI.py来下载图像
最后我们可以通过使用一些find 计算每个查询下载的图像总数。
到此,以上就是小编对于深度学习python图像的问题就介绍到这了,希望介绍关于深度学习python图像的2点解答对大家有用。