大家好,今天小编关注到一个比较有意思的话题,就是关于机器学习python设计的问题,于是小编就整理了2个相关介绍机器学习Python设计的解答,让我们一起看看吧。
机器学习实践:如何将Spark与Python结合?
1.Spark Context设置内部服务并建立到Spark执行环境的连接。
2.驱动程序中的Spark Context对象协调所有分布式进程并允许进行资源分配。
4.Spark Context对象将应用程序发送给执行者。
5.Spark Context在每个执行器中执行任务。
Python速度那么慢,为什么还经常用于机器学习?
大部分的机器学习库都是用 C++ 写的,都提供了对 java 和 Python 的支持,使用这俩语言相当于在调包而已,一些计算密集型、IO密集型的操场都是底层框架在跑,所以对于 Python 写的机器学习项目来说,不是很慢。
python 在机器学习时,运行计算时,调用numpy 库,这个库速度非常快,和c语言的一个级别。现在运算量大的 机器学习 算法,都用 gpu,tpu 等硬件提速,如果靠cpu,无论采用什么编程语言,都不可能 达到要求,类似 比特币挖矿,都用矿机,用cpu 挖就赚不到钱,比电费多不了多少。机器学习 采用硬件提速 也是这个道理。所以和上边采用的编程语言 关系不大。 python 编程速度快,算法编程实现是,可以大大节约 开发人员的时间,减少软件错误。
python,是最适合机器学习的,所以被广泛采用。
python,只所以在桌面软件,服务器等大型软件上,采用的少,主要原因是 和 c以及Java 相比,python 不利于代码的保密。而机器学习,不需要将算法代码,发布给用户,所以没有这方面问题。
到此,以上就是小编对于机器学习python设计的问题就介绍到这了,希望介绍关于机器学习python设计的2点解答对大家有用。